1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
import math
class sieve:
def __init__(self, limit):
self.limit = limit
self.number_list = [False] + [True]*(self.limit-1)
self.list_len = len(self.number_list)
def next_prime(self, i):
x = i+1
while(x <= self.list_len):
if self.number_list[x-1] == True:
break
x += 1
return x
def primes(self):
i = 2
while(i*i <= self.list_len):
x = i*i
while(x <= self.list_len):
self.number_list[x-1] = False
x += i
i = self.next_prime(i)
primeset = set()
for i in xrange(1, self.limit+1):
if self.number_list[i-1]:
primeset.add(i)
return primeset
class pandigital:
# create n-digit pandigital numbers
def __init__(self, start, end):
self.digits = set()
for d in range(start, end+1):
self.digits.add(d)
# return set of digits that are not in x
def missing(self, x):
d = set()
while x > 0:
d.add(x % 10)
x /= 10
return self.digits - d
def numbers(self, r):
result = set()
result |= self.digits
for i in range(2, r):
new = set()
for x in result:
for y in self.missing(x):
new.add(x*10 + y)
result |= new
return result
def ggt(a, b): # Stein's algorithm
k = 0
t = 0
while a&1==0 and b&1==0:
a = a>>1
b = b>>1
k += 1
if a&1==1:
t = -b
else:
t = a
while t != 0:
while t&1==0:
t = t>>1
if t>0:
a = t
else:
b = -t
t = a - b
return a*(1<<k)
def composite(n): # check if n = c^b
primes = sieve(int(math.sqrt(n))+1).primes()
for c in primes:
number = c
while number < n:
number *= c
if number == n:
return True
return False
def order(n, r):
res = n % r
k = 1
while res != 1:
res = (res * n) % r
k += 1
return k
def phi(x):
primes = sieve(x+1).primes()
product = x
for p in primes:
if x % p != 0:
continue
product *= (1 - 1.0/p)
return int(product)
def prime_test(n): # aks test
if composite(n):
return False
logn = math.log(n, 2)
o = 0
r = 0
while o <= logn:
r += 1
o = order(n, r)
a = 1
while a <= r:
g = ggt(a, n)
if g < n and g > 1:
return False
a += 1
if n <= r*r:
return True
#for a in xrange(1, math.floor(math.sqrt(phi(r))*logn)):
# # TODO if math.pow(x+a, n) !=
return True
def permutation(p, q): # checks whether p is a permuation of q
digits_p = [0]*10
digits_q = [0]*10
while p > 0:
digit = p % 10
digits_p[digit] += 1
p /= 10
while q > 0:
digit = q % 10
digits_q[digit] += 1
q /= 10
return digits_p == digits_q
|