aboutsummaryrefslogtreecommitdiff
path: root/tuner.c
blob: 74e9820a8f12d3133bd77bca46ee2679f565e90f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#define _GNU_SOURCE

#include <stdio.h>
#include <signal.h>
#include <math.h>
#include <limits.h>
#include <complex.h>
#include <fftw3.h>
#include <alsa/asoundlib.h>

#include "common.h"

#define SAMPLE_RATE 8000
#define FFT_SIZE (1<<13)

#define ACCURACY 2.0 // Hz
#define NOISE_FLOOR 30

#define FFT_INDEX_TO_FREQ(i) ((float)i * SAMPLE_RATE / FFT_SIZE)

static double *fft_in, *magnitudes, *processed;
static fftw_complex *fft_out;
static fftw_plan fft_plan;
static double peak_freq = -1.0;

static int capturing = 1;

static void handle_signals(int signum __attribute__((unused)))
{
	capturing = 0;
}

static int set_alsa_params(snd_pcm_t *pcm_handle)
{
	snd_pcm_hw_params_t *hwparams;
	unsigned int rate = SAMPLE_RATE;
	snd_pcm_uframes_t bufsize = FFT_SIZE;

	snd_pcm_hw_params_alloca(&hwparams);

	if (snd_pcm_hw_params_any(pcm_handle, hwparams) < 0) {
		fprintf(stderr, "Failed configuring device\n");
		return -1;
	}
	if (snd_pcm_hw_params_set_access(pcm_handle, hwparams, SND_PCM_ACCESS_RW_INTERLEAVED) < 0) {
		fprintf(stderr, "Failed setting access mode\n");
		return -1;
	}
	if (snd_pcm_hw_params_set_format(pcm_handle, hwparams, SND_PCM_FORMAT_FLOAT64_LE) < 0) {
		fprintf(stderr, "Failed setting format\n");
		return -1;
	}
	if (snd_pcm_hw_params_set_rate_near(pcm_handle, hwparams, &rate, 0) < 0) {
		fprintf(stderr, "Failed setting sample rate\n");
		return -1;
	}
	if (snd_pcm_hw_params_set_buffer_size_near(pcm_handle, hwparams, &bufsize) < 0) {
		fprintf(stderr, "Failed setting buffer size\n");
		return -1;
	}
	if (snd_pcm_hw_params_set_channels(pcm_handle, hwparams, 1) < 0) {
		fprintf(stderr, "Failed setting channel number\n");
		return -1;
	}
	if (snd_pcm_hw_params(pcm_handle, hwparams) < 0) {
		fprintf(stderr, "Failed applying hardware parameters\n");
		return -1;
	}

	return 0;
}

static void fft_init()
{
	magnitudes = fftw_alloc_real(FFT_SIZE);
	processed = fftw_alloc_real(FFT_SIZE);
	fft_in = fftw_alloc_real(FFT_SIZE);
	fft_out = fftw_alloc_complex(FFT_SIZE);
	fft_plan = fftw_plan_dft_r2c_1d(FFT_SIZE, fft_in, fft_out, FFTW_ESTIMATE);
}

static void fft_cleanup()
{
	fftw_destroy_plan(fft_plan);
	fftw_free(magnitudes);
	fftw_free(processed);
	fftw_free(fft_in);
	fftw_free(fft_out);
}

static void update_output(double freq, char note, int dir)
{
	char note_str[] = "---";
	char freq_str[20] = "---";
	char peak_str[20] = "---";

	if (freq >= 0) {
		snprintf(note_str, sizeof(note_str), "%c%c%c", dir<0 ? '>' : ' ', note, dir>0 ? '<' : ' ');
		snprintf(freq_str, sizeof(freq_str), "%.2f Hz", freq);
		snprintf(peak_str, sizeof(peak_str), "%.2f Hz", peak_freq);
	}

	printf("\rNote: %s   Frequency: %s, Peak: %s          ", note_str, freq_str, peak_str);
	fflush(stdout);
}

static void find_note(double freq)
{
	int i, index = 0, dir = 0;
	char note = '?';

	/*                                E,     A,      D,      G,      B,      e                 */
	const double notes[] = { INT_MIN, 82.41, 110.00, 146.83, 196.00, 246.94, 329.63, INT_MAX };
	const char *note_str = "?EADGBe?";

	for (i=0; i<7; i++) {
		if (freq > notes[i+1]) {
			continue;
		}
		if (freq > (notes[i] + notes[i+1])/2) {
			note = note_str[i+1];
			dir = -1;
			index = i+1;
		} else {
			note = note_str[i];
			dir = +1;
			index = i;
		}
		break;
	}

	if (fabs(freq - notes[index]) < ACCURACY) {
		dir = 0;
	}

	update_output(freq, note, dir);
}

static void calculate_magnitudes()
{
	int i, max_i = -1;

	for (i=0; i<FFT_SIZE-1; i++) {
		/* +1 because out[0] is DC result */
		magnitudes[i] = cabs(fft_out[i+1]);

		if (magnitudes[i] < NOISE_FLOOR) {
			magnitudes[i] = 0.0;
		}

		/* also find highest magnitude for later informational output */
		if (magnitudes[i] > magnitudes[max_i]) {
			max_i = i;
		}
	}
	peak_freq = FFT_INDEX_TO_FREQ(max_i);
}

static void apply_hps()
{
	/* Harmonic Product Spectrum
	   enhance magnitude of fundamental frequency by multiplying with harmonics/overtones
	   which can have higher magnitudes than fundamentals */

	int i;

	for (i=0; i<FFT_SIZE; i++) {
		int j;
		processed[i] = magnitudes[i];
		/* next 4 harmonics */
		for (j=2; j<=5; j++) {
			if (i*j >= FFT_SIZE) {
				break;
			}
			if (magnitudes[i*j] < 0.00001) {
				/* too close to zero */
				continue;
			}
			processed[i] *= magnitudes[i*j];
		}
	}
}

static void process_frames()
{
	int i, max_i = -1;
	double freq;

	fftw_execute(fft_plan);
	calculate_magnitudes();
	apply_hps();

	/* find point with largest magnitude */
	for (i=0; i<FFT_SIZE; i++) {
		if (processed[i] > processed[max_i]) {
			max_i = i;
		}
	}
	freq = FFT_INDEX_TO_FREQ(max_i);
	find_note(freq);
}

static void capture(snd_pcm_t *pcm_handle)
{
	while(capturing) {
		int read;
		while ((read = snd_pcm_readi(pcm_handle, fft_in, FFT_SIZE)) < 0) {
			snd_pcm_prepare(pcm_handle);
			printf("overrun\n");
		}
		if (read == FFT_SIZE) {
			process_frames();
		}
	}
	printf("\n");
}

int main()
{
	snd_pcm_t *pcm_handle;

	if (toggle_nonblocking_input() < 0) {
		return 1;
	}

	if (snd_pcm_open(&pcm_handle, "default", SND_PCM_STREAM_CAPTURE, 0) < 0) {
		fprintf(stderr, "Failed opening device for capturing\n");
		return 1;
	}

	if (set_alsa_params(pcm_handle) < 0) {
		return 1;
	}

	signal(SIGINT, handle_signals);
	signal(SIGTERM, handle_signals);

	fft_init();
	capture(pcm_handle);

	snd_pcm_close(pcm_handle);
	fft_cleanup();

	if (toggle_nonblocking_input() < 0) {
		return 1;
	}

	return 0;
}