1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
use regex::Regex;
use std::collections::{HashMap, HashSet};
static DAY: u8 = 14;
fn main() {
let input = advent::read_lines(DAY);
println!("{DAY}a: {}", safety_factor(&input, Position { x: 101, y: 103 }));
println!("{DAY}b: {}", find_tree(&input, Position { x: 101, y: 103 }));
}
#[derive(Eq, PartialEq, Hash, Clone, Copy)]
struct Position {
x: isize,
y: isize,
}
struct Robot {
pos: Position,
velocity: Position,
}
impl Robot {
fn new(input: &str) -> Robot {
let re = Regex::new(r"p=([0-9]+),([0-9]+) v=([-0-9]+),([-0-9]+)").unwrap();
let caps = re.captures(input).unwrap();
let x = caps.get(1).unwrap().as_str().parse::<isize>().unwrap();
let y = caps.get(2).unwrap().as_str().parse::<isize>().unwrap();
let dx = caps.get(3).unwrap().as_str().parse::<isize>().unwrap();
let dy = caps.get(4).unwrap().as_str().parse::<isize>().unwrap();
Robot {
pos: Position { x, y },
velocity: Position { x: dx, y: dy },
}
}
fn travel(&mut self, area: &Position) {
self.pos.x = (self.pos.x + self.velocity.x + area.x) % area.x;
self.pos.y = (self.pos.y + self.velocity.y + area.y) % area.y;
}
fn quadrant(&self, area: &Position) -> u8 {
if self.pos.x < area.x / 2 && self.pos.y < area.y / 2 {
1
} else if self.pos.x < area.x / 2 && self.pos.y > area.y / 2 {
2
} else if self.pos.x > area.x / 2 && self.pos.y < area.y / 2 {
3
} else if self.pos.x > area.x / 2 && self.pos.y > area.y / 2 {
4
} else {
0
}
}
}
struct RobotMap {
robots: Vec<Robot>,
area: Position,
}
impl RobotMap {
fn new(input: &[String], area: Position) -> RobotMap {
let robots = input.iter()
.map(|line| Robot::new(line))
.collect::<Vec<_>>();
RobotMap { robots, area }
}
fn tick(&mut self) {
for robot in self.robots.iter_mut() {
robot.travel(&self.area);
}
}
fn safety_factor(&self) -> u32 {
let mut quadrants = HashMap::new();
for robot in &self.robots {
let quadrant = robot.quadrant(&self.area);
if quadrant != 0 {
let entry = quadrants.entry(quadrant).or_insert(0);
*entry += 1;
}
}
quadrants.values().product()
}
fn to_text(&self) -> String {
let mut map = String::new();
let positions = self.robots.iter()
.map(|robot| robot.pos)
.collect::<HashSet<_>>();
for y in 0 .. self.area.y {
for x in 0 .. self.area.x {
if positions.contains(&Position { x, y }) {
map += "*";
} else {
map += ".";
}
}
map += "\n";
}
map
}
fn draw(&self) {
println!("{}", self.to_text());
}
}
fn safety_factor(input: &[String], area: Position) -> u32 {
let mut robotmap = RobotMap::new(input, area);
for _ in 0 .. 100 {
robotmap.tick();
}
robotmap.safety_factor()
}
fn find_tree(input: &[String], area: Position) -> u32 {
let mut robotmap = RobotMap::new(input, area);
let mut i = 0;
loop {
robotmap.tick();
i += 1;
/* output likely contains a lot of robots closely together */
if robotmap.to_text().contains("*********") {
robotmap.draw();
return i;
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test() {
let input = [
"p=0,4 v=3,-3",
"p=6,3 v=-1,-3",
"p=10,3 v=-1,2",
"p=2,0 v=2,-1",
"p=0,0 v=1,3",
"p=3,0 v=-2,-2",
"p=7,6 v=-1,-3",
"p=3,0 v=-1,-2",
"p=9,3 v=2,3",
"p=7,3 v=-1,2",
"p=2,4 v=2,-3",
"p=9,5 v=-3,-3",
].iter().map(|&x| String::from(x)).collect::<Vec<_>>();
assert_eq!(safety_factor(&input, Position { x: 11, y: 7}), 12);
}
}
|